\qquad 1. Determine the increasing and decreasing open intervals of the function $f(x)=(x-3)^{4 / 5}(x+1)^{1 / 5}$ over its domain. Tip: factor out least powers from the derivative to put it into full-fledged-factored-form!
(A) Inc: $\left(-1,-\frac{1}{5}\right)$, Dec: $\left(-\frac{1}{5}, \infty\right)$
(B) Inc: $\left(-1,-\frac{1}{5}\right) \cup(3, \infty)$, Dec: $\left(-\frac{1}{5}, 3\right)$
(C) Inc: $(-\infty,-1) \cup(3, \infty)$, Dec: $(-1,3)$
(D) Inc: $\left(-\infty,-\frac{1}{5}\right) \cup(3, \infty)$, Dec: $\left(-\frac{1}{5}, 3\right)$
(E) Inc: $\left(-\frac{1}{5}, 3\right) \cup(3, \infty)$, Dec: $\left(-1, \frac{1}{5}\right) \cup(3, \infty)$
3. Let $f(x)=x\left(4+x^{2}-\frac{x^{4}}{5}\right)$.
\qquad (i) Which of the following is $f^{\prime}(x)$?
(A) $f^{\prime}(x)=\left(1+x^{2}\right)\left(5-x^{2}\right)$
(B) $f^{\prime}(x)=\left(1+x^{2}\right)\left(4-x^{2}\right)$
(C) $f^{\prime}(x)=\left(1-x^{2}\right)\left(5+x^{2}\right)$
(D) $f^{\prime}(x)=\left(1-x^{2}\right)\left(4+x^{2}\right)$
(E) $f^{\prime}(x)=\left(1-x^{2}\right)\left(4-x^{2}\right)$
(ii) Find the open interval(s) on which f is increasing.
(A) $(-\infty,-2) \cup(2, \infty)$
(B) $(-\infty,-\sqrt{5}) \cup(\sqrt{5}, \infty)$
(C) $(-2,2)$
(D) $(-\infty,-1) \cup(1, \infty)$
(E) $(-1,1)$
\qquad 5. Which of the following statements about the absolute maximum and absolute minimum values of $f(x)=\frac{x^{3}-4 x^{2}-6 x-1}{x+1}$ on the interval $[0, \infty)$ are correct? (Hint: Think of what type of discontinuity does $f(x)$ have??? $\frac{0}{0}$ or $\frac{\neq 0}{0}$)
(A) $\operatorname{Max}=13$, No Min
(B) No Max, Min $=-\frac{29}{4}$
(C) $\operatorname{Max}=13, \operatorname{Min}=-\frac{29}{4}$
(D) $\operatorname{Max}=5$, No Min
(E) No Max, Min $=-1$
6. (Calculator Permitted) The first derivative of the function f is defined by $f^{\prime}(x)=\cos \left(x^{3}-x\right)$ for $0 \leq x \leq 2$. On what intervals is f increasing?
(A) $0 \leq x \leq 1.445$ only
(B) $1.445 \leq x \leq 1.875$
(C) $1.691 \leq x \leq 2$
(D) $0 \leq x \leq 1$ and $1.691 \leq x \leq 2$
(E) $0 \leq x \leq 1.445$ and $1.875 \leq x \leq 2$
7. For each of the following, find the critical values (on the indicated intervals, if indicated.) Remember, a critical value MUST be in the domain of the function, though it may not be in the domain of the derivative.
(a) $f(x)=x^{2}(3-x)$
(b) $f(x)=\frac{\sin x}{1+\cos ^{2} x},[0,2 \pi]$
(c) $f(x)=\frac{x^{2}}{x^{2}-9}$

