Warm-up

Find $y^{\prime}=d y / d x$ for $(x-y)^{2}=x+y-1$

Find $\frac{d^{2} y}{d x^{2}}$ where $y^{2}-x y=8$

3.9: Derivatives of Exponential and Logarithmic Functions

Look at the graph of
 $$
y=e^{x}
$$

The slope at $x=0$ appears to be 1 .

If we assume this to be true, then:
definition of derivative

Now we attempt to find a general formula for the derivative of using the definition. $=e^{x}$

$$
\begin{aligned}
\frac{d}{d x}\left(e^{x}\right) & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h}
\end{aligned}
$$

$$
=e^{x} \cdot \lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)
$$

$$
\begin{aligned}
=\lim _{h \rightarrow 0}\left(e^{x} \cdot \frac{e^{h}-1}{h}\right) \quad & =e^{x} \cdot 1 \\
& =e^{x}
\end{aligned}
$$

The Derivative of e^{x}

Therefore: The derivative of $f(x)=e^{x}$ is $f^{\prime}(x)=e^{x}$.

Find $f^{\prime}(x)$
A) $f(x)=4 e^{x}-8 x^{2}+7 x-14$

$$
f^{\prime}(x)=4 e^{x}-16 x+7
$$

B) $f(x)=x^{7}-x^{5}+e^{3}-x+e^{x}$

$$
\begin{aligned}
f^{\prime}(x) & =7 x^{6}-5 x^{4}+0-1+e^{x} \\
& =7 x^{6}-5 x^{4} \quad-1+e^{x}
\end{aligned}
$$

Review: properties of In

$$
\begin{aligned}
& \text { 1) } \ln (a b)=\ln a+\ln b \\
& \text { 2) } \ln \frac{a}{b}=\ln a-\ln b \\
& \text { 3) } \ln a^{k}=k \ln a \\
& \text { 4) } \ln e=1 \\
& \text { 5) } \ln 1=0
\end{aligned}
$$

The Derivative of $\ln x$

Therefore: The derivative of $f(x)=\ln x$ is $f^{\prime}(x)=$

Find y ' for
A) $y=10 x^{3}-100 \ln x$

$$
y^{\prime}=30 x^{2}-100\left(\frac{1}{x}\right)=30 x^{2}-\frac{100}{x}
$$

B) $y=\ln x^{5}+e^{x}-\ln e^{2}$

$$
y=5 \ln x+e^{x}-\ln e^{2}
$$

$$
y^{\prime}=5\left(\frac{1}{x}\right)+e^{x}+0=\frac{5}{x}+e^{x}
$$

More formulas

The derivative of $f(x)=b^{x}$

$$
\text { is } f^{\prime}(x)=b^{x} \ln b
$$

The derivative of $f(x)=\log _{b} x$

$$
\text { is } f^{\prime}(x)=\frac{1}{x}\left(\frac{1}{\ln b}\right)
$$

Find $g^{\prime}(x)$ for
A)

$$
\begin{aligned}
& g(x)=x^{10}+10^{x} \\
& g^{\prime}(x)=10 x^{9}+10^{x} \ln (10)
\end{aligned}
$$

B) $g(x)=\log _{2} x-6 \log _{5} x$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{1}{x}\left(\frac{1}{\ln 2}\right)-6\left(\frac{1}{x}\right)\left(\frac{1}{\ln 5}\right) \\
& g^{\prime}(x)=\frac{1}{x}\left(\frac{1}{\ln 2}-\frac{6}{\ln 5}\right)
\end{aligned}
$$

