Warm-up
Find
$$y' = \frac{dy}{dx}$$
 for $(x-y)^2 = x + y - 1$

Find
$$\frac{d^2y}{dx^2}$$
 where $y^2 - xy = 8$

3.9: Derivatives of Exponential and Logarithmic Functions

Now we attempt to find a general formula for the derivative of using the definition $V = e^x$

$$\frac{d}{dx}\left(e^{x}\right) = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

$$=\lim_{h\to 0}\frac{e^x\cdot e^h-e^x}{h}$$

$$= \lim_{h \to 0} \left(e^x \cdot \frac{e^h - 1}{h} \right)$$

$$=e^{x}\cdot\lim_{h\to 0}\left(\frac{e^{h}-1}{h}\right)$$

This is the slope at x=0, which we have assumed to be 1.

 $=e^{x}\cdot 1$ $=e^{x}$

The Derivative of e^x

Therefore: The derivative of $f(x) = e^x$ is $f'(x) = e^x$.

Find f'(x)
A)
$$f(x) = 4e^{x} - 8x^{2} + 7x - 14$$

f'(x) = 4e^x - 16x + 7

B)
$$f(x) = x^7 - x^5 + e^3 - x + e^x$$

 $f'(x) = 7x^6 - 5x^4 + 0 - 1 + e^x$
 $= 7x^6 - 5x^4 - 1 + e^x$

Review: properties of In

1)
$$\ln(ab) = \ln a + \ln b$$

2) $\ln \frac{a}{b} = \ln a - \ln b$
3) $\ln a^{k} = k \ln a$
4) $\ln e = 1$
5) $\ln 1 = 0$

The Derivative of In x

Find y' for
A)
$$y = 10x^3 - 100 \ln x$$

 $y' = 30x^2 - 100 \left(\frac{1}{x}\right) = 30x^2 - \frac{100}{x}$

B)
$$y = \ln x^5 + e^x - \ln e^2$$

 $y = 5\ln x + e^x - \ln e^2$
 $y' = 5\left(\frac{1}{x}\right) + e^x + 0 = \frac{5}{x} + e^x$

More formulas

The derivative of $f(x) = b^x$ is $f'(x) = b^x \ln b$

The derivative of $f(x) = \log_b x$

is
$$f'(x) = \frac{1}{x} \left(\frac{1}{\ln b} \right)$$

Find g'(x) for

A)
$$g(x) = x^{10} + 10^x$$

 $g'(x) = 10x^9 + 10^x \ln(10)$

B)
$$g(x) = \log_2 x - 6\log_5 x$$

 $g'(x) = \frac{1}{x} \left(\frac{1}{\ln 2}\right) - 6 \left(\frac{1}{x}\right) \left(\frac{1}{\ln 5}\right)$
 $g'(x) = \frac{1}{x} \left(\frac{1}{\ln 2} - \frac{6}{\ln 5}\right)$