- 1. The spread of a disease through a community can be modeled with the logistic equation $y = \frac{600}{1 + 59e^{-0.1t}}$, where y is the number of people infected after t days. How many people are infected when the disease is spreading the fastest?
 - (A) 10
- (B) 59
- (C) 60
- (D) 300
- (E)600
- 2. The spread of a disease through a community can be modeled with the logistic equation $y = \frac{0.9}{1 + 45e^{-0.15t}}$, where y is the proportion of people infected after t days. According to the model, what percentage of people in the community will not become infected?
 - (A) 2%
- (B) 10%
- (C) 15%
- (D) 45%
- (E) 90%
- 3. $\int_{2}^{3} \frac{3}{(x-1)(x+2)} dx =$ (A) $-\frac{33}{20}$ (B) $-\frac{9}{20}$ (C) $\ln\left(\frac{5}{2}\right)$ (D) $\ln\left(\frac{8}{5}\right)$ (E) $\ln\left(\frac{2}{5}\right)$

4. Which of the following differential equations would produce the slope field shown below?

(A)
$$\frac{dy}{dx} = 0.01x(120 - x)$$
 (B) $\frac{dy}{dx} = 0.01y(120 - y)$ (C) $\frac{dy}{dx} = 0.01y(100 - x)$ (D) $\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2x}}$ (E) $\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2y}}$

- 5. The population P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = P\left(2 \frac{P}{5000}\right)$, where the initial population is P(0) = 3000 and t is the time in years. What is $\lim_{t \to \infty} P(t)$?
 - (A) 2500
- (B) 3000
- (C) 4200
- (D) 5000
- (E) 10,000
- 6. Suppose a population of wolves grows according to the logistic differential equation $\frac{dP}{dt} = 3P 0.01P^2$, where P is the number of wolves at time t, in years. Which of the following statements are true?
 - I. $\lim P(t) = 300$
 - II. The growth rate of the wolf population is greatest when P = 150.
 - If P > 300, the population of wolves is increasing.
 - (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

7. $\int \frac{7x}{(2x-3)(x+2)} dx =$

(A)
$$\frac{3}{2}\ln|2x-3|+2\ln|x+2|+C$$
 (B) $3\ln|2x-3|+2\ln|x+2|+C$ (C) $3\ln|2x-3|-2\ln|x+2|+C$

(D)
$$-\frac{6}{(2x-3)^2} - \frac{2}{(x+2)^2} + 6$$

(D)
$$-\frac{6}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$$
 (E) $-\frac{3}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$

8. $\int \frac{2x}{x^2 + 3x + 2} dx =$

(A)
$$\ln |x+2| + \ln |x+1| + C$$

(B)
$$\ln |x+2| + \ln |x+1| - 3x + C$$

(A)
$$\ln|x+2| + \ln|x+1| + C$$
 (B) $\ln|x+2| + \ln|x+1| - 3x + C$ (C) $-4\ln|x+2| + 2\ln|x+1| + C$

(D)
$$4\ln|x+2|-2\ln|x+1|+C$$
 (E) $2\ln|x|+\frac{2}{3}x+\frac{1}{2}x^2+C$

(E)
$$2\ln|x| + \frac{2}{3}x + \frac{1}{2}x^2 + C$$