\qquad

1. The spread of a disease through a community can be modeled with the logistic equation $y=\frac{600}{1+59 e^{-0.1 t}}$, where y is the number of people infected after t days. How many people are infected when the disease is spreading the fastest?
(A) 10
(B) 59
(C) 60
(D) 300
(E) 600
2. The spread of a disease through a community can be modeled with the logistic equation $y=\frac{0.9}{1+45 e^{-0.15 t}}$, where y is the proportion of people infected after t days. According to the model, what percentage of people in the community will not become infected?
(A) 2%
(B) 10%
(C) 15%
(D) 45%
(E) 90%
3. $\int_{2}^{3} \frac{3}{(x-1)(x+2)} d x=$
(A) $-\frac{33}{20}$
(B) $-\frac{9}{20}$
(C) $\ln \left(\frac{5}{2}\right)$
(D) $\ln \left(\frac{8}{5}\right)$
(E) $\ln \left(\frac{2}{5}\right)$
4. Which of the following differential equations would produce the slope field shown below?

$[-3,8]$ by $[-50,150 \mid$
(A) $\frac{d y}{d x}=0.01 x(120-x)$
(B) $\frac{d y}{d x}=0.01 y(120-y)$
(C) $\frac{d y}{d x}=0.01 y(100-x)$
(D) $\frac{d y}{d x}=\frac{120}{1+60 e^{-1.2 x}}$
(E) $\frac{d y}{d x}=\frac{120}{1+60 e^{-1.2 y}}$
5. The population $P(t)$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(2-\frac{P}{5000}\right)$, where the initial population is $P(0)=3000$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 2500
(B) 3000
(C) 4200
(D) 5000
(E) 10,000
6. Suppose a population of wolves grows according to the logistic differential equation $\frac{d P}{d t}=3 P-0.01 P^{2}$, where P is the number of wolves at time t, in years. Which of the following statements are true?
I. $\lim _{t \rightarrow \infty} P(t)=300$
II. The growth rate of the wolf population is greatest when $P=150$.
III. If $P>300$, the population of wolves is increasing.
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III
7. $\int \frac{7 x}{(2 x-3)(x+2)} d x=$
(A) $\frac{3}{2} \ln |2 x-3|+2 \ln |x+2|+C$
(B) $3 \ln |2 x-3|+2 \ln |x+2|+C$
(C) $3 \ln |2 x-3|-2 \ln |x+2|+C$
(D) $-\frac{6}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
(E) $-\frac{3}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
8. $\int \frac{2 x}{x^{2}+3 x+2} d x=$
(A) $\ln |x+2|+\ln |x+1|+C$
(B) $\ln |x+2|+\ln |x+1|-3 x+C$
(C) $-4 \ln |x+2|+2 \ln |x+1|+C$
(D) $4 \ln |x+2|-2 \ln |x+1|+C$
(E) $2 \ln |x|+\frac{2}{3} x+\frac{1}{2} x^{2}+C$
