3.5 Derivatives of Trig Functions

Consider the function $y=\sin (\theta)$
We could make a graph of the slope:

Now we connect the dots!
The resulting curve is a cosine curve.

θ	slope
$-\pi$	-1
$-\frac{\pi}{2}$	0
0	1
$\frac{\pi}{2}$	0
π	-1

$$
\frac{d}{d x} \sin (x)=\cos x
$$

We can do the same thing for $y=\cos (\theta)$

The resulting curve is a sine curve that has been reflected about the x-axis.

$$
\frac{d}{d x} \cos (x)=-\sin x
$$

We can find the derivative of tangent x by using the quotient rule.

$\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x}$
$\sec ^{2} x$

$$
\frac{d}{d x} \tan (x)=\sec ^{2} x
$$

Derivatives of the remaining trig functions can be determined the same way.

$$
\begin{array}{ll}
\frac{d}{d x} \sin x=\cos x & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \cos x=-\sin x & \frac{d}{d x} \sec x=\sec x \cdot \tan x \\
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \csc x=-\csc x \cdot \cot x
\end{array}
$$

Higher Order Derivatives:

$y^{\prime}=\frac{d y}{d x}$ is the first derivative of y with respect to x .
$y^{\prime \prime}=\frac{d y^{\prime}}{d}=\frac{d}{d y} \underline{d y}=\frac{d^{2} y}{d x^{2}} \quad$ is the second derivative.
(y double prime)
$y^{\prime \prime \prime}=\frac{d y^{\prime \prime}}{d x} \quad$ is the third derivative.
$y^{(4)}=\frac{d}{d x} y^{\prime \prime \prime} \quad$ is the fourth derivative.

We will learn later what these higher order derivatives are used for.

Assignment

p. 146 \# 1-10

When finished go to
http://archives.math.utk.edu/visual.calculus/2/trig.1/ and write down the six trig derivatives then complete the first five product rule problems and the first five quotient rule problems.

