4.2 Mean Value Theorem for Derivatives

Teddy Roosevelt National Park, North Dakota

Photo by Vickie Kelly, 2002

Greg Kelly, Hanford High School, Richland, Washington

Mean Value Theorem for Derivatives

If f(x) is a differentiable function over [a,b], then at some point between a and b:

$$\frac{f(b)-f(a)}{b-a} = f'(c)$$

Differentiable implies that the function is also continuous.

Differentiable implies that the function is also continuous.

The Mean Value Theorem only applies over a closed interval.

The Mean Value Theorem says that at some point in the closed interval, the actual slope equals the average slope.

A function is <u>increasing</u> over an interval if the derivative is always positive.

A function is <u>decreasing</u> over an interval if the derivative is always negative.

Find the function f(x) whose derivative is $\sin(x)$ and whose graph passes through (0, 2).

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\therefore f(x) = -\cos(x) + C$$

$$2 = -\cos(0) + C$$

so:
$$\frac{d}{dx} - \cos(x) = \sin(x)$$

Find the function f(x) whose derivative is $\sin(x)$ and whose graph passes through (0,2).

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

so:
$$\frac{d}{dx} - \cos(x) = \sin(x)$$

Notice that we had to have initial values to determine the value of C.

$$f(x) = -\cos(x) + C$$
$$2 = -\cos(0) + C$$
$$2 = -1 + C$$
$$3 = C$$

The process of finding the original function from the derivative is so important that it has a name:

Antiderivative

A function F(x) is an **antiderivative** of a function f(x)if F'(x) = f(x) for all x in the domain of f. The process of finding an antiderivative is **antidifferentiation**.

You will hear <u>much</u> more about antiderivatives in the future.

This section is just an introduction.

Example 7b: Find the velocity and position equations for a downward acceleration of 9.8 m/sec² and an initial velocity of 1 m/sec downward.

a(t) = 9.8(We let down be positive.) v(t) = 9.8t + C1 = 9.8(0) + C1 = Cv(t) = 9.8t + 1

Example 7b: Find the velocity and position equations for a downward acceleration of 9.8 m/sec² and an initial velocity of 1 m/sec downward.

$$a(t) = 9.8$$
$$v(t) = 9.8t + C$$

$$s(t) = \frac{9.8}{2}t^2 + t + C$$

$$1 = 9.8(0) + C$$

1 = C

$$v(t) = 9.8t + 1$$

The power rule in reverse: <u>Increase</u> the exponent by one and multiply by the reciprocal of the new exponent. Example 7b: Find the velocity and position equations for a downward acceleration of 9.8 m/sec² and an initial velocity of 1 m/sec downward.

$$a(t) = 9.8$$

 $v(t) = 9.8t + C$
 $1 = 9.8(0) + C$
 $1 = C$
 $v(t) = 9.8t + 1$
 $s(t) = \frac{9.8}{2}t^2 + t + C$
 $s(t) = 4.9t^2 + t + C$
The initial position is zero at time zero.
 $0 = 4.9(0)^2 + 0 + C$
 $0 = C$
 $s(t) = 4.9t^2 + t$

Assignment: p 202 Exercises # 1-8, 29 - 34