4.2 Mean Value Theorem for Derivatives

Teddy Roosevelt National Park, North Dakota

Mean Value Theorem for Derivatives

If $f(x)$ is a differentiable function over $[a, b]$, then at some point between a and b :

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Mean Value Theorem for Derivatives

If $f(x)$ is a differentiable function over $[a, b]$, then at some point between a and b :

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Differentiable implies that the function is also continuous.

Mean Value Theorem for Derivatives

If $f(x)$ is a differentiable function over $[a, b]$, then at some point between a and b :

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Differentiable implies that the function is also continuous.

The Mean Value Theorem only applies over a closed interval.

Mean Value Theorem for Derivatives

If $f(x)$ is a differentiable function over $[a, b]$, then at some point between a and b :

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

The Mean Value Theorem says that at some point in the closed interval, the actual slope equals the average slope.

A function is increasing over an interval if the derivative is always positive.

A function is decreasing over an interval if the derivative is always negative.

Find the function $f(x)$ whose derivative is $\sin (x)$ and whose graph passes through $(0,2)$.

$$
\frac{d}{d x} \cos (x)=-\sin (x)
$$

$$
\text { so: } \frac{d}{d x}-\cos (x)=\sin (x)
$$

Example 6:

Find the function $f(x)$ whose derivative is $\sin (x)$ and whose graph passes through $(0,2)$.

$$
\begin{array}{cc}
\frac{d}{d x} \cos (x)=-\sin (x) & \therefore f(x)=-\cos (x)+C \\
\text { so: } \frac{d}{d x}-\cos (x)=\sin (x) & 2=-\cos (0)+C \\
2=-1+C \\
3=C
\end{array}
$$

Notice that we had to have initial values to determine the value of C.

$$
f(x)=-\cos (x)+3
$$

The process of finding the original function from the derivative is so important that it has a name:

Antiderivative

A function $F(x)$ is an antiderivative of a function $f(x)$
if $F^{\prime}(x)=f(x)$ for all x in the domain of f. The process of finding an antiderivative is antidifferentiation.

You will hear much more about antiderivatives in the future.
This section is just an introduction.

Example 7b: Find the velocity and position equations for a downward acceleration of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ downward.
$a(t)=9.8$
(We let down be positive.)

$$
v(t)=9.8 t+C
$$

$$
1=9.8(0)+C
$$

$$
1=C
$$

$$
v(t)=9.8 t+1
$$

Example 7b: Find the velocity and position equations for a downward acceleration of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ downward.

$$
\begin{gathered}
a(t)=9.8 \\
v(t)=9.8 t+C \\
1=9.8(0)+C \\
1=C
\end{gathered}
$$

$$
s(t)=\frac{9.8}{2} t^{2}+t+C
$$

The power rule in reverse:
Increase the exponent by one and multiply by the reciprocal of the new exponent.

$$
v(t)=9.8 t+1
$$

Example 7b: Find the velocity and position equations for a downward acceleration of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ downward.
$a(t)=9.8$
$v(t)=9.8 t+C$

$$
\begin{aligned}
& s(t)=\frac{9.8}{2} t^{2}+t+C \\
& s(t)=4.9 t^{2}+t+C
\end{aligned}
$$

The initial position is zero at time zero.

$$
\begin{gathered}
1=C \\
v(t)=9.8 t+1
\end{gathered}
$$

$$
\begin{gathered}
0=4.9(0)^{2}+0+C \\
0=C \\
s(t)=4.9 t^{2}+t
\end{gathered}
$$

Assignment: p 202 Exercises \# 1-8, 29-34

