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In the past, one of the important uses of derivatives was as 

an aid in curve sketching.  We usually use a calculator of 

computer to draw complicated graphs, it is still important to 

understand the relationships between derivatives and 

graphs.





First derivative:

y is positive Curve is increasing.

y is negative Curve is decreasing.

y is zero Possible local maximum or 

minimum.

Second derivative:

y is positive Curve is concave up.

y is negative Curve is concave down.

y is zero Possible inflection point

(where concavity changes).




Example:
Graph   

23 23 4 1 2y x x x x     

There are roots at               and             .1x   2x 

23 6y x x  

0y Set

20 3 6x x 

20 2x x 

 0 2x x 

0, 2x 

First derivative test:

y

0 2

0 0 

  21 3 1 6 1 3y       negative

     
2

1 3 1 6 1 9y       positive

  23 3 3 6 3 9y      positive


Possible extreme at               .0, 2x 



Example:
Graph   

23 23 4 1 2y x x x x     

There are roots at               and             .1x   2x 

23 6y x x  

0y Set

20 3 6x x 

20 2x x 

 0 2x x 

0, 2x 

First derivative test:

y

0 2

0 0 

 maximum at 0x 

minimum at 2x 



Possible extreme at               .0, 2x 



Example:
Graph   

23 23 4 1 2y x x x x     

There are roots at               and             .1x   2x 

23 6y x x  

0y Set

20 3 6x x 

20 2x x 

 0 2x x 

0, 2x 

Possible extreme at               .0, 2x 

Or you could use the second derivative test:

 maximum at 0x  minimum at 2x  

6 6y x  

 0 6 0 6 6y      negative
concave down

local maximum

 2 6 2 6 6y     positive
concave up

local minimum



Example:
Graph   

23 23 4 1 2y x x x x     



6 6y x  

We then look for inflection points by setting the second 

derivative equal to zero.

0 6 6x 

6 6x

1 x

Possible inflection point at           .1x 

y

1

0 

 0 6 0 6 6y      negative

 2 6 2 6 6y     positive

 inflection point at 1x 
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Make a summary table:

x y y y

1 0 9 12 rising, concave down

0 4 0 6 local max

1 2 3 0 falling, inflection point

2 0 0 6 local min

3 4 9 12 rising, concave up

p
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