UNIT 7:

LOGARITHMIC FUNCTIONS

Exponential Function

- Where \boldsymbol{b} is the base and x is the exponent (or power).
- If \boldsymbol{b} is greater than 1 , the function continuously increases in value as \boldsymbol{x} increases.
- A special property of exponential functions is that the slope of the function also continuously increases as x increases.

Logarithmic Function

- Simply a way to express the value of an exponent.
- The base of the logarithm is \boldsymbol{b}.
- The logarithmic function has many real-life applications, in acoustics, electronics, earthquakes analysis and population prediction

The Graph of the Exponential Function \& the Inverse Function:

$b>1$

$0<b<1$

The Graph of the Exponential Function \& The Inverse Function:

a. Sketch the graph of $\mathrm{f}(x)=2^{x}$.
b. Write the equation of $\mathrm{f}^{-1}(x)$ and sketch its graph.

Solution
a. Make a table of values for $\mathrm{f}(x)=2^{x}$, plot the points, and draw the curve.

\boldsymbol{x}	$\mathbf{2}^{\mathbf{x}}$	$\mathbf{f}(\boldsymbol{x})$
-2	$2^{-2}=\frac{1}{2^{2}}$	$\frac{1}{4}$
-1	$2^{-1}=\frac{1}{2}$	$\frac{1}{2}$
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4
3	2^{3}	8

b. Let $\mathrm{f}(x)=2^{x} \rightarrow y=2^{x}$.

To write $\mathrm{f}^{-1}(x)$, interchange x
 and y.
$x=2^{y}$ is written as $y=\log _{2} x$. Therefore, $\mathrm{f}^{-1}(x)=\log _{2} x$.

Exponential Form \& Logarithmic Form

$b^{a}=c$ is equivalent to $\log _{b} c=a$.

$$
\begin{array}{cc}
\text { Exponent } \underset{b^{a}=c}{\downarrow} \downarrow^{\text {Power }} & \text { Power } \downarrow \downarrow \downarrow^{\text {Exponent }} \\
\underset{\text { Base }}{\downarrow} & \log _{b} c=a
\end{array}
$$

Basic Properties of Logarithms

If $0<b<1$ or $b>1$:

$$
\begin{aligned}
& b^{0}=1 \leftrightarrow \log _{b} 1=0 \\
& b^{1}=b \leftrightarrow \log _{b} b=1
\end{aligned}
$$

Examples: Write in logarithmic form

$$
\text { 1. } 8=2^{3}
$$ 3. $4^{5}=1024$

$$
\text { 2. } \quad 27=3^{3}
$$

$$
\text { 4. } y=2^{x}
$$

Examples: Write in exponential form

1. $\log _{5} x=2$ 3. $\log _{3}(x+1)=2$

$$
\text { 2. } \log _{6} 216=3 \text { 4. } \log _{x} 4=y
$$

Product \& Addition Property

$$
\log _{b} c d=\log _{b} c+\log _{b} d
$$

The \log of a product is the sum of the logs of the factors of the product.

Examples: Write as a single log expression or write as the sum of multiple log expressions.

$$
\text { 1. } \log 2+\log 6 \quad \text { 3. } \log 10
$$

$$
\text { 2. } \log 7+\log x \quad \text { 4. } \log 2 z
$$

Quotient \& Subtraction Property

$$
\log _{b} \frac{c}{d}=\log _{b} c-\log _{b} d
$$

The \log of a quotient is the \log of the dividend minus the \log of the divisor.

Examples: Write as a single log expression or write as the difference of multiple log expressions.

$$
\begin{array}{ll}
\text { 1. } \log 9-\log 3 & \text { 3. } \log \frac{12}{4} \\
\text { 2. } \log 24-\log x & \text { 4. } \log \frac{5 a}{b}
\end{array}
$$

Power \& Coefficient Property

$$
\log _{b} c^{a}=a \log _{b} c
$$

The \log of a power is the exponent times the \log of the base.

Important Rule!!

- When you have a number under the radical we can rewrite that as a fractional exponent and then follow the Power \& Coefficient Property.

$$
\log \sqrt{x}=\log x^{\frac{1}{2}}=\frac{1}{2} \log x
$$

Examples: Write the log expression with a leading coefficient or with an exponent.

$$
\begin{array}{ll}
\text { 1. } \log 6^{2} & \text { 3. } a \log 5 \\
\text { 2. } \log x^{y} & \text { 4. } 3 \log 8 \\
\text { 5. } \log \sqrt[3]{y^{2}}
\end{array}
$$

Summary

	Logarithms
Multiplication	$\log _{b} c d=\log _{b} c+\log _{b} d$
Division	$\log _{b} \frac{c}{d}=\log _{b} c-\log _{b} d$
Logarithm of a Power	$\log _{b} c^{a}=a \log _{b} c$
Logarithm of I	$\log _{b} I=0$
Logarithm of the Base	$\log _{b} b=1$

Put It All Together

- These properties will most likely all be presented together in a question!
- They will be given with all having the same base
- You will be asked to expand each of the expressions using the logarithmic properties

OR

- You will be asked to write each expression as a single logarithm

Examples: Expand or condense the following

 logarithmic expressions$$
\text { 1. } \frac{1}{2} \log _{10} x+z \log _{10} 6 \quad \text { 3. } \log _{2} a^{4} b^{5}
$$

$$
\text { 2. } \log _{3} a-2 \log _{3}(b+1) \quad \text { 4. } \log _{4} \frac{m^{9}}{n^{2}}
$$

Common Log

* The graphing calculators are written in base 10.

DEFINITION
A common logarithm is a logarithm to the base 10 .

$\log _{10} 100=\log 100$

Examples:

1. $\log _{10} 4$

3. $\log _{10} 3$

2. $\log _{10} 6$ 4. $\log 17$

Remember, if you don't see a 10 for the base it is still a common base so it can be plugged right into the calculator as is.

Natural Logs

DEFINTITION

A natural logarithm is a logarithm to the base e.

$\ln e=1$

* All of the Log Properties also apply to natural logs
- Multiplication \& Addition
* Division \& Subtraction
* Power \& Coefficient

Examples: Simplify the following expressions

1. $\ln e^{x}$ 3. $\ln 2+\ln 3$
2. $\ln e^{-0.017}$

$$
\text { 4. } \ln 7-\ln 4
$$

Examples: Simplify the following expressions

$$
\text { 5. } \quad \ln 3^{2}
$$

$$
\text { 7. } \ln 3^{4}+\ln 4^{5}
$$

6. $5 \ln 8$

$$
\text { 8. } \quad \ln x^{2}-\ln y^{3}
$$

Examples: Solve the equation by using Natural Logs

$$
\text { 9. } e^{x}=3 \quad \text { 10. } e^{2 x}=34
$$

Homework:

- Complete all the even numbers from the work sheet provided

