UNIT 7: LOGARITHMIC FUNCTIONS

Exponential Function

- Where **b** is the **base** and x is the **exponent** (or **power**).
- If b is greater than 1, the function continuously increases in value as x increases.
- A special property of exponential functions is that the slope of the function also continuously increases as x increases.

Logarithmic Function

- Simply a way to express the value of an exponent.
- The base of the logarithm is b.
- The logarithmic function has many real-life applications, in acoustics, electronics, earthquakes analysis and population prediction

The Graph of the Exponential Function & the Inverse Function:

The Graph of the Exponential Function & The Inverse Function:

a. Sketch the graph of $f(x) = 2^x$.

b. Write the equation of $f^{-1}(x)$ and sketch its graph.

Solution a. Make a table of values for $f(x) = 2^x$, plot the points, and draw the curve.

x	2×	f(x)
-2	$2^{-2} = \frac{1}{2^2}$	<u> </u>
-1	$2^{-1} = \frac{1}{2}$	12
0	2 ⁰	I
1	21	2
2	2 ²	4
3	2 ³	8

b. Let $f(x) = 2^x \to y = 2^x$.

To write $f^{-1}(x)$, interchange x and y.

 $x = 2^{y}$ is written as $y = \log_2 x$. Therefore, $f^{-1}(x) = \log_2 x$.

Exponential Form & Logarithmic Form

 $\blacktriangleright b^a = c$ is equivalent to $\log_b c = a$.

Basic Properties of Logarithms

If 0 < b < 1 or b > 1:

 $b^0 = 1 \iff \log_b 1 = 0$ $b^1 = b \iff \log_b b = 1$ Examples: Write in logarithmic form

1.
$$8 = 2^3$$
 3. $4^5 = 1024$

2.
$$27 = 3^3$$

4.
$$y = 2^x$$

Examples: Write in exponential form

1.
$$\log_5 x = 2$$
 3. $\log_3(x+1) = 2$

2. $\log_6 216 = 3$ 4. $\log_x 4 = y$

Product & Addition Property

 $\log_b cd = \log_b c + \log_b d$

The log of a product is the sum of the logs of the factors of the product.

Examples: Write as a single log expression or write as the sum of multiple log expressions.

1. $\log 2 + \log 6$ 3. $\log 10$

2. $\log 7 + \log x$

Quotient & Subtraction Property

$$\log_b \frac{c}{d} = \log_b c - \log_b d$$

The log of a quotient is the log of the dividend minus the log of the divisor.

Examples: Write as a single log expression or write as the difference of multiple log expressions.

1.
$$\log 9 - \log 3$$
 3. $\log \frac{12}{4}$

2. $\log 24 - \log x$

1 ^

Power & Coefficient Property

$$\log_b c^a = a \log_b c$$

The log of a power is the exponent times the log of the base.

Important Rule!!

 When you have a number under the radical we can rewrite that as a fractional exponent and then follow the *Power & Coefficient Property.*

$$\log \sqrt{x} = \log x^{\frac{1}{2}} = \frac{1}{2} \log x$$

Examples: Write the log expression with a leading coefficient or with an exponent.

 1. $\log 6^2$ 3. $a \log 5$

 2. $\log x^y$ 4. $3\log 8$

5.
$$\log \sqrt[3]{y^2}$$

Summary

	Logarithms	
Multiplication	$\log_b cd = \log_b c + \log_b d$	
Division	$\log_b \frac{c}{d} = \log_b c - \log_b d$	
Logarithm of a Power	$\log_b c^a = a \log_b c$	
Logarithm of I	$\log_b I = 0$	
Logarithm of the Base	$\log_b b = 1$	

Put It All Together

- These properties will most likely all be presented together in a question!
- They will be given with all having the same base
- You will be asked to expand each of the expressions using the logarithmic properties

OR

 You will be asked to write each expression as a single logarithm Examples: Expand or condense the following logarithmic expressions 1. $\frac{1}{2}\log_{10}x + z\log_{10}6$ 3. $\log_2 a^4b^5$

2. $\log_3 a - 2\log_3(b+1)$

Common Log

The graphing calculators are written in base 10.

DEFINITION ________ A common logarithm is a logarithm to the base 10.

$\log_{10} 100 = \log 100$

Examples:

1. $\log_{10} 4$ 3. $\log_{10} 3$

2. $\log_{10} 6$

log174.

Remember, if you don't see a **10** for the base it is still a common base so it can be plugged right into the calculator as is.

Natural Logs

DEFINITION

A natural logarithm is a logarithm to the base *e*.

$\ln e = 1$

- All of the Log Properties also apply to natural logs
 - Multiplication & Addition
 - Division & Subtraction
 - Power & Coefficient

Examples: Simplify the following expressions

1. $\ln e^x$ 3. $\ln 2 + \ln 3$

2. $\ln e^{-0.017}$

4. $\ln 7 - \ln 4$

Examples: Simplify the following expressions

5. $\ln 3^2$ 7. $\ln 3^4 + \ln 4^5$

6. 5ln8

 $8. \quad \ln x^2 - \ln y^3$

Examples: Solve the equation by using Natural Logs

9.
$$e^x = 3$$
 10. $e^{2x} = 34$

Homework:

 Complete all the even numbers from the work sheet provided