Unit 7:
 Graph of Logarithmic Functions

Exponential Function \& The Inverse Graph

 In Chapter 7, we showed that any positive real number can be the exponent of a power by drawing the graph of the exponential function $y=b^{x}$ for $0<b<1$ or $b>1$. Since $y=b^{x}$ is a one-to-one function, its reflection in the line $y=x$ is also a function. The function $x=b^{y}$ is the inverse function of $y=b^{x}$.

The equation of a function is usually solved for y in terms of x. To solve the equation $x=b^{y}$ for y, we need to introduce some new terminology. First we will describe y in words:
$x=b^{y}: \quad$ " y is the exponent to the base b such that the power is x."

$$
0<b<1
$$

The Graph of the Exponential Function \& the Inverse Function:

Exponential Function \& The Inverse

A logarithm is an exponent. Therefore, we can write:

$$
x=b^{y}: \quad \text { " } y \text { is the logarithm to the base } b \text { of the power } x . "
$$

The word logarithm is abbreviated as \log. Look at the essential parts of this sentence:
$y=\log _{b} x: \quad$: \boldsymbol{y} is the logarithm to the base \boldsymbol{b} of \boldsymbol{x}."
The base b is written as a subscript to the word "log."

- $x=b^{y}$ can be written as $y=\log _{b} x$.

For example, let $b=2$. Write pairs of values for $x=2^{y}$ and $y=\log _{2} x$.

$\boldsymbol{x}=\mathbf{2}^{\boldsymbol{y}}$	In Words	$\boldsymbol{y}=\log _{2} \boldsymbol{x}$	$(\mathbf{x}, \boldsymbol{y})$
$\frac{1}{2}=2^{-1}$	-I is the logarithm to the base 2 of $\frac{1}{2}$.	$-\mathrm{I}=\log _{2} \frac{1}{2}$	$\left(\frac{1}{2},-1\right)$
$1=2^{0}$	0 is the logarithm to the base 2 of I.	$0=\log _{2} 1$	$(1,0)$
$\sqrt{2}=2^{\frac{1}{2}}$	$\frac{1}{2}$ is the logarithm to the base 2 of $\sqrt{2}$.	$\frac{1}{2}=\log _{2} \sqrt{2}$	$\left(\sqrt{2}, \frac{1}{2}\right)$
$2=2^{1}$	1 is the logarithm to the base 2 of 2.	$1=\log _{2} 2$	$(2, I)$
$4=2^{2}$	2 is the logarithm to the base 2 of 4.	$2=\log _{2} 4$	$(4,2)$
$8=2^{3}$	3 is the logarithm to the base 2 of 8.	$3=\log _{2} 8$	$(8,3)$

We say that $y=\log _{b} x$, with b a positive number not equal to 1 , is a logarithmic function.

EXAMPLE I

Write the equation $x=10^{y}$ for y in terms of x.

Solution $x=10^{y} \leftarrow y$ is the exponent or logarithm to the base 10 of x.

$$
y=\log _{10} x
$$

When we interchange x and y to form the inverse function $x=b^{y}$ or $y=\log _{b} x$:

- The domain of $y=\log _{b} x$ is the set of positive real numbers.
- The range $y=\log _{b} x$ is the set of real numbers.
- The y-axis or the line $x=0$ is a vertical asymptote of $y=\log _{b} x$.

EXAMPLE 2

a. Sketch the graph of $\mathrm{f}(x)=2^{x}$.
b. Write the equation of $\mathrm{f}^{-1}(x)$ and sketch its graph.
a. Sketch the graph of $\mathrm{f}(x)=2^{x}$.
b. Write the equation of $\mathrm{f}^{-1}(x)$ and sketch its graph.

Solution a. Make a table of values for $\mathrm{f}(x)=2^{x}$, plot the points, and draw the curve.

\boldsymbol{x}	$\mathbf{2}^{\mathbf{x}}$	$\mathbf{f}(\boldsymbol{x})$
-2	$2^{-2}=\frac{1}{2^{2}}$	$\frac{1}{4}$
-1	$2^{-1}=\frac{1}{2}$	$\frac{1}{2}$
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4
3	2^{3}	8

a. Sketch the graph of $\mathrm{f}(x)=2^{x}$.
b. Write the equation of $\mathrm{f}^{-1}(x)$ and sketch its graph.
b. Let $\mathrm{f}(x)=2^{x} \rightarrow y=2^{x}$.

To write $\mathrm{f}^{-1}(x)$, interchange x and y.

$$
x=2^{y} \text { is written as } y=\log _{2} x \text {. Therefore, } \mathrm{f}^{-1}(x)=\log _{2} x .
$$

To draw the graph, interchange x and y in each ordered pair or reflect the graph of $\mathrm{f}(x)$ over the line $y=x$. Ordered pairs of $\mathrm{f}^{-1}(x)$ include $\left(\frac{1}{4},-2\right)$, $\left(\frac{1}{2},-1\right),(1,0),(2,1),(4,2)$, and $(8,3)$.

Homework

- Problems from the given work sheet

