Unit 7: Graph of Logarithmic Functions

Exponential Function & The Inverse Graph

In Chapter 7, we showed that any positive real number can be the exponent of a power by drawing the graph of the exponential function $y = b^x$ for 0 < b < 1 or b > 1. Since $y = b^x$ is a one-to-one function, its reflection in the line y = x is also a function. The function $x = b^y$ is the inverse function of $y = b^x$.

The equation of a function is usually solved for y in terms of x. To solve the equation $x = b^y$ for y, we need to introduce some new terminology. First we will describe y in words:

 $x = b^y$: "y is the exponent to the base b such that the power is x."

The Graph of the Exponential Function & the Inverse Function:

Exponential Function & The Inverse

A **logarithm** is an exponent. Therefore, we can write:

 $x = b^y$: "y is the *logarithm* to the base b of the power x."

The word *logarithm* is abbreviated as *log*. Look at the essential parts of this sentence:

 $y = \log_b x$: "y is the logarithm to the base b of x."

The base b is written as a subscript to the word "log."

 $x = b^y$ can be written as $y = \log_b x$.

For example, let b = 2. Write pairs of values for $x = 2^y$ and $y = \log_2 x$.

$x = 2^y$	In Words	$y = log_2 x$	(x, y)
$\frac{1}{2} = 2^{-1}$	-I is the logarithm to the base 2 of $\frac{1}{2}$.	$-1 = \log_2 \frac{1}{2}$	$\left(\frac{1}{2},-1\right)$
$I = 2^0$	0 is the logarithm to the base 2 of 1.	$0 = \log_2 I$	(1,0)
$\sqrt{2} = 2^{\frac{1}{2}}$	$\frac{1}{2}$ is the logarithm to the base 2 of $\sqrt{2}$.	$\frac{1}{2} = \log_2 \sqrt{2}$	$\left(\sqrt{2},\frac{1}{2}\right)$
$2 = 2^{I}$	I is the logarithm to the base 2 of 2.	$I = log_2 2$	(2, 1)
$4 = 2^2$	2 is the logarithm to the base 2 of 4.	$2 = \log_2 4$	(4, 2)
$8 = 2^3$	3 is the logarithm to the base 2 of 8.	$3 = \log_2 8$	(8, 3)

We say that $y = \log_b x$, with b a positive number not equal to 1, is a **logarithmic function**.

EXAMPLE I

Write the equation $x = 10^y$ for y in terms of x.

Solution
$$x = 10^y \leftarrow y$$
 is the exponent or logarithm to the base 10 of x . $y = \log_{10} x$

When we interchange x and y to form the inverse function $x = b^y$ or $y = \log_b x$:

- ► The domain of $y = \log_b x$ is the set of positive real numbers.
- ► The range $y = \log_b x$ is the set of real numbers.
- ▶ The y-axis or the line x = 0 is a vertical asymptote of $y = \log_b x$.

EXAMPLE 2

- **a.** Sketch the graph of $f(x) = 2^x$.
- **b.** Write the equation of $f^{-1}(x)$ and sketch its graph.

EXAMPLE 2

- **a.** Sketch the graph of $f(x) = 2^x$.
- **b.** Write the equation of $f^{-1}(x)$ and sketch its graph.

Solution a. Make a table of values for $f(x) = 2^x$, plot the points, and draw the curve.

х	2 ^x	f(x)
-2	$2^{-2} = \frac{1}{2^2}$	<u> </u> 4
-I	$2^{-1} = \frac{1}{2}$	1/2
0	20	I
I	21	2
2	2 ²	4
3	23	8

EXAMPLE 2

- **a.** Sketch the graph of $f(x) = 2^x$.
- **b.** Write the equation of $f^{-1}(x)$ and sketch its graph.

b. Let $f(x) = 2^x \to y = 2^x$.

To write $f^{-1}(x)$, interchange x and y.

 $x = 2^y$ is written as $y = \log_2 x$. Therefore, $f^{-1}(x) = \log_2 x$.

To draw the graph, interchange x and y in each ordered pair or reflect the graph of f(x) over the line y = x. Ordered pairs of $f^{-1}(x)$ include $\left(\frac{1}{4}, -2\right)$,

 $\left(\frac{1}{2}, -1\right)$, (1, 0), (2, 1), (4, 2), and (8, 3).

Homework

• Problems from the given work sheet