State the pattern for each set.

• 3, 6, 9, 12, 15, 18, 21, 24, ...

• 25, 20, 15, 10, 5, 0, -5, -10, ... 3+(5)=-7

• -21, 3, 27, 51, 75, 99, 123, ...

Unit 8: Recursive Functions

ARITHMETIC SEQUENCES

Definition: Arithmetic Sequence

A sequence in which there is a **common difference** (d) between consecutive terms.

$$-26, -21, -16, -11, -6, \dots$$

Is the given sequence arithmetic? If so, identify the common difference.

2, 4, 8, 16, ...
4, 6, 12, 18, 24, ...
2, 5, 7, 12, ...
48, 45, 42, 39, ...
1, 4, 9, 16, ...
10, 20, 30, 40, ...
$$10^{2}$$

Arithmetic Sequence Formula

The 1st term in the sequence.

The common difference.

$$a_n = a_1 + (n - 1) \bullet d$$

The "nth" term in the sequence.

ex. a₅ is the 5th term.

The same as the n in a_n .

If you're looking for the 5th term in the sequence, n = 5.

Example 1:

$$a_n = a_1 + (n - 1) \cdot d$$

Given the sequence -4, 5, 14, 23, 32, 41, 50,...,

find the 14th term.

$$a_1 = -4$$
 $n = 14$
 $d_2 = 113$

$$a_n = -4 + (14-1).9$$
 $a_n = 113$

Example 2:

$$a_n = a_1 + (n - 1) \cdot d$$

Given the sequence 6, 10, 14, 18, 22, 26,..., find the 17th term.

$$a_1 = 6$$
 $n = 17$
 $d = 4$
 $a_1 = 70$
 $a_1 = a_{17} = 70$

$$a_{17} = 6 + (17-1)4$$
 $a_{17} = 6 + (16).4$
 $a_{17} = 70$
 $a_{17} = 70$
 $a_{17} = 70$
 $a_{17} = 70$

Example 3:

$$a_n = a_1 + (n - 1) \cdot d$$

-.5 -.5 -.5 Given the sequence 81, 80.5, 80, 79.5, 79,..., find

the 9th term.

$$a_{q} = 81 + (9-1) \cdot (-.5)$$
 $a_{q} = 77$

Example 4:

 $a_n = a_1 + (n - 1) \cdot d$

Given the sequence 79, 75, 71, 67, 63,..., find the term that has a value of -169.

$$a_{1} = 79$$
 $h = 63$
 $d = -4$
 $q_{n} = -169$

$$-169 = 79 + (n-1)(-4)$$

$$-248 = (n-1)(-4)$$

$$-348 =$$

Example 5:

$$a_n = a_1 + (n - 1) \cdot d$$

Given the sequence 4,7,10,13,..., find the term that has a value of 301.

$$q=4$$
 $301=4(n-1)(3)$
 $n=4$
 $4=4$
 $4=3$
 $3977(n-1)(3)$
 $4=1$
 $3977(n-1)(3)$
 $3=1$
 $3=1$
 $3=1$

Try this!

Write a formula for the following sequences.

b) The first term is 3 and the common difference is -21

c) The second term is 8 and the common difference is 3

rmine if the sequence is arithmetic. If it is, find the common difference. e the formula for each sequence.

2) -3, -23, -43, -63, ...

1 a₁₅

Find a₁₀

4) -30, -40, -50, -60, ...

d the 34th term

Find the 21st term

$$^{\prime}$$
, -9 , -11 , -13 , ...

6) 9, 14, 19, 24, ...

d the term that has the value of -91

Find the term that has the value of 59

Recursive Formula for Arithmetic Sequences

 Each term in an arithmetic sequence can be obtained recursively from its preceding term by adding d:

$$a_n = a_{n-1} + d$$
 (for all $n \ge 2$)