REVIEW OF LOGS

Please get into groups for the day.

Solve for t .

1. $300(1.07)^{t}=5,000$
2. $6000=200\left(1+\frac{.15}{4}\right)^{4 t}$
3. $500=150 e^{0.12 t}$

1. $300(1.07)^{t}=5,000 \quad 41.6 \mathrm{yrs}$

2. $6000=200\left(1+\frac{.15}{4}\right)^{4 t} \quad 23.1 \mathrm{yrs}$
3. $500=150 e^{0.12 t}$

10.02 yrs

SOLVING WORD PROBLEMS

Sequences \& Series Word Problems

\square Determine if it is a Sequence or a Series - are you being asked for a specific event/amount or the sum of events/amounts?
\square Determine if it's Arithmetic or Geometric - is there a common difference or ratio between the given pieces of data?
\square Determine which formula to use

A mine worker discovers an ore sample containing 500
Ex 1 . mg of radioactive material. It is discovered that the radioactive material has a half life of 1 day. Find the amount of radioactive material in the sample at the beginning of the $7^{\text {th }}$ day.

Geometric Sequence
$a_{1}=500$
$r=.5$
$\mathrm{n}=7$

$$
\begin{aligned}
& a_{n}=a_{1} \cdot r^{(n-1)} \\
& a_{7}=500 \cdot .5^{(7-1)} \\
& a_{7}=500 \cdot .5^{(6)} \\
& a_{7}=500 \cdot .0156 \\
& a_{7}=7.8125
\end{aligned}
$$

The sum of the interior angles of a triangle is 180°, of
Ex2. a quadrilateral is 360° and of a pentagon is 540°. Assuming this pattern continues, find the sum of the interior angles of a dodecagon (12 sides) then find the sum of all the shapes interior angles.

Arithmetic Series
al $=180$
$\mathrm{n}=10$
$d=180$

- Find $12^{\text {th }}$ term
- Find the sum

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) \cdot d \\
a_{12} & =180+(10-1) \cdot 180 \\
a_{12} & =2160 \\
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{12} & =\frac{12}{2}(180+2160) \\
S_{12} & =14,040
\end{aligned}
$$

The hotel tells you that they will increase the
Ex3. temperature by 10% each hour. If the current temperature of the hot tub is $75^{\circ} \mathrm{F}$, what will be the temperature of the hot tub after 3 hours, to the nearest tenth of a degree?

Geometric Series

$$
\begin{aligned}
& a_{1}=75 \\
& r=.10 \\
& n=3
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{a_{1} \cdot\left(1-r^{n}\right)}{(1-r)} \\
& S_{3}=\frac{75 \cdot\left(1-.10^{3}\right)}{(1-.10)} \\
& S_{3}=83.25^{\circ}
\end{aligned}
$$

Investment Formulas:

$\square \mathrm{P}_{\circ}=$ principal or initial amount (can use either)
$\square \mathrm{A}=$ investment amount accumulated after a period of time
$\square r=$ rate at which an investment amount can grow (as a decimal)
$\square \dagger=$ number of years
$\square \mathrm{n}=$ number of times an investment is compounded per year
\square Annually - once a year
\square Semiannually - twice a year
\square Quarterly - every four months

- Monthly - 12 times a year
- Continuously - every day, 365 times

Types of Compounding Interest:

\square Not Continuous
\square Annually
\square Semiannually
\square Quarterly
\square Monthly

$$
n t \quad A=P_{o}(1 \pm r)^{t}
$$

\square How long will it take $\$ 30,000$ to accumulate to $\$ 110,000$ in a trust that earns a 10% annual interest compounded monthly?

$$
A=P_{o} \quad 1 \pm \frac{r}{n} \div
$$

\square How long will it take $\$ 30,000$ to accumulate to DOUBLE in a trust that earns a 10% annual interest compounded continuously?

$$
A=P_{o}(1 \pm r)^{t}
$$

Group Activity

\square Select an interest rate (r)
\square Select an initial investment amount (Po)
\square Calculate how long it would take your investment to be worth \$100,000 compounded....
$\square 1$. Annually

- 2. Monthly
$\square 3$. Continuously

Solve each equation for "r"

$$
\text { 1. } 4000=2500(1+r)^{5} \quad 0.1 \text { or } 10 \%
$$

2. $7000=200\left(1+\frac{r}{4}\right)^{24} 0.64$ or 64%
3. $800=120 e^{3 r}$

0.63 or $\mathbf{6 3} \%$

Solve each equation for "Po"

1. $8,500=P_{0}(1.09)^{8} \quad 4,265.86$
2. $P_{0}\left(1+\frac{0.10}{12}\right)^{36}=15,000 \quad \mathbf{1 1 , 1 2 6 . 1 0}$
3. $P_{0} e^{(0.14 \cdot 6)}=12,000 \quad 5,180.53$

Ticket Out:

\square 1. At what rate of interest would a person need to invest in order to turn $\$ 200.00$ into $\$ 5,000$ in 6 years if compounded monthly?
\square 2. A student wants to save $\$ 8000$ for college in 5 years. How much should be put into an account that pays 5.2\% annual interest compounded continuously?

