REVIEW OF LOGS

Please get into groups for the day.

Solve for t.

1. $300(1.07)^t = 5,000$

2.
$$6000 = 200\left(1 + \frac{.15}{4}\right)^{4t}$$

3. $500 = 150e^{0.12t}$

2. $6000 = 200 \left(1 + \frac{.15}{4}\right)^{4\iota}$ **23.1 yrs**

3. $500 = 150e^{0.12t}$

SOLVING WORD PROBLEMS

Sequences & Series Word Problems

- Determine if it is a Sequence or a Series are you being asked for a specific event/amount or the sum of events/amounts?
- Determine if it's Arithmetic or Geometric is there a common difference or ratio between the given pieces of data?
- Determine which formula to use

A mine worker discovers an ore sample containing 500 **Ex1.** mg of radioactive material. It is discovered that the radioactive material has a **half life** of 1 day. Find the amount of radioactive material in the sample at the beginning of the 7th day.

 Geometric Sequence
 $a_n = a_1 \cdot r^{(n-1)}$
 $a_1 = 500$ $a_7 = 500 \cdot .5^{(7-1)}$

 r = .5 $a_7 = 500 \cdot .5^{(6)}$

 n = 7 $a_7 = 500 \cdot .0156$
 $a_7 = 7.8125$

The sum of the interior angles of a triangle is 180°, of **Ex2.** a quadrilateral is 360° and of a pentagon is 540°. Assuming this pattern continues, find the sum of the interior angles of a dodecagon (12 sides) then find the sum of all the shapes interior angles.

Arithmetic Series

- a1 = 180
- n = 10
- d = 180
- Find 12th term
- Find the sum

 $a_n = a_1 + (n - 1) \cdot d$ $a_{12} = 180 + (10 - 1) \cdot 180$ $a_{12} = 2160$

$$S_n = \frac{n}{2} (a_1 + a_n)$$

 $S_{12} = \frac{12}{2} (180 + 2160)$

 $S_{12} = 14,040$

The hotel tells you that they will increase the Ex3. temperature by 10% each hour. If the current temperature of the hot tub is 75° F, what will be the temperature of the hot tub after 3 hours, to the nearest tenth of a degree?

$$S_3 = 83.25^{\circ}$$

Investment Formulas:

- \square P_o= principal or initial amount (can use either)
- \square A = investment amount accumulated after a period of time
- r = rate at which an investment amount can grow (as a decimal)
- \Box t = number of years
- \Box n = number of times an investment is compounded per year
 - Annually once a year
 - Semiannually twice a year
 - Quarterly every four months
 - Monthly 12 times a year
 - Continuously every day, 365 times

Types of Compounding Interest:

- Not Continuous
 - Annually
 - Semiannually
 - Quarterly
 - Monthly

- Continuously
 - Accruing interest every day

$$A = P_o \left(1 \pm r \right)^t$$

How long will it take \$30,000 to accumulate to \$110,000 in a trust that earns a 10% annual interest compounded monthly?

$$A = P_o \mathop{\rm e}\limits^{\mathfrak{A}} 1 \pm \frac{r \, \overset{\, \circ}{\mathbf{0}}^{nt}}{n \, \overset{\, \circ}{\mathbf{0}}}$$

How long will it take \$30,000 to accumulate to
 DOUBLE in a trust that earns a 10% annual interest compounded continuously?

$$A = P_o \left(1 \pm r\right)^t$$

Group Activity

- Select an interest rate (r)
- □ Select an initial investment amount (P_o)
- Calculate how long it would take your investment to be worth \$100,000 compounded....
 - 1. Annually
 - **2**. Monthly
 - **3.** Continuously

Solve each equation for "r"

1.
$$4000 = 2500(1+r)^5$$
 0.1 or 10%

2. 7000 = 200
$$\left(1 + \frac{r}{4}\right)^{24}$$
 0.64 or 64%

3. $800 = 120e^{3r}$

Solve each equation for " P_0 "

1. 8,500 =
$$P_0(1.09)^8$$

2.
$$P_0 \left(1 + \frac{0.10}{12} \right)^{36} = 15,000$$
 11,126.10

3.
$$P_0 e^{(0.14 \cdot 6)} = 12,000$$
 5,180.53

Ticket Out:

1. At what rate of interest would a person need to invest in order to turn \$200.00 into \$5,000 in 6 years if compounded monthly?

2. A student wants to save \$8000 for college in 5 years. How much should be put into an account that pays 5.2% annual interest compounded continuously?