Warmup

Using IVT Determine if there are any roots for the function $F(x)=x^{2}+3 x-9$ on the interval $[1,2]$

Limits Involving Trig Functions

Unit 1 day 5

What are our choices?

If the function is defined at c...
(\#1) then calculate $f(c)$ by plugging " C " directly into the function

If the function is not defined at " c " (has a hole/asymptote)

Other options:
Factor \& Simplify, re-write and simplify, rationalize, use a table/graph to find values very close to " c "

Ex 1) $\lim _{x \rightarrow 0} \frac{\cos (x)}{\sin (x)-3}$

$$
\begin{gathered}
=\frac{\cos (0)}{\sin (0)-3} \\
=\frac{1}{0-3} \\
=\frac{1}{-3}
\end{gathered}
$$

Ex 2) $\lim _{x \rightarrow \pi} x \cos (x)$

Ex 3) $\lim _{x \rightarrow 0^{+}} \cot (x)$

Common Trig Limits to memorize

$\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=$

$$
\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=
$$

1
0

Ex 4) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}$

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \cdot \frac{4}{\cdot 4}
$$

$$
\lim _{x \rightarrow 0} \frac{4 \sin (4 x)}{4 x}
$$

$$
4 \lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}
$$

$$
4 \cdot 1=4
$$

Ex 5) $\lim _{x \rightarrow 0} \frac{\tan (x)}{x}$

Ex 6) $\lim \frac{\sec (x)-1}{x}$
 Ex 6) lim
 x

Ex 7) $\lim _{x \rightarrow 0} \frac{\sin (x)(1-\cos (x))}{2 x^{2}}$

Class assignment

(a) Graph the piecewise function: $f(x)=\left\{\begin{array}{lr}\sin x, & -2 \pi \leq x<0 \\ \cos x, & 0 \leq x \leq 2 \pi\end{array}\right.$

(b) There are 3 locations where the limit of $f(c)$ DNE, where are they?
(c) Use interval notation to explain where the limit DOES exist
2. Show that $\lim _{x \rightarrow 0} \frac{x+\sin (x)}{x}=2$

3. Evaluate: $\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right)}{1+\frac{1}{1}}$ by finding the limit of the numerator and ${ }^{x}$ denominator

 separately