3.1 Derivatives

Great Sand Dunes National Monument, Colorado

Photo by Vickie Kelly, 2003

Greg Kelly, Hanford High School, Richland, Washington

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \text{ is called the derivative of } f \text{ at } a.$$
We write: $f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
"The derivative of f with respect to x is ..."

There are many ways to write the derivative of y = f(x)

f'(x)	"f prime x" or "the derivative of f with respect to x"		
<i>y</i> ′	"y prime"		
$\frac{dy}{dx}$	"dee why dee ecks	" Or	"the derivative of y with respect to x"
$\frac{df}{dx}$	"dee eff dee ecks"	or	"the derivative of f with respect to x"
$\frac{d}{dx}f(x) \text{ "dee dee ecks uv eff uv ecks" or "the derivative of f of x"} (d dx of f of x)$			

dx does <u>not</u> mean d times x !

dy does <u>not</u> mean *d* times *y* !

$$\frac{dy}{dx}$$
 does not mean $dy \div dx$!

(except when it is convenient to think of it as division.)

$$\frac{df}{dx}$$
 does not mean $df \div dx$!

(except when it is convenient to think of it as division.)

$$\frac{d}{dx}f(x)$$
 does not mean $\frac{d}{dx}$ times $f(x)$!

(except when it is convenient to treat it that way.)

In the future, all will become clear.

 \rightarrow

A function is <u>differentiable</u> if it has a derivative everywhere in its domain. It must be <u>continuous</u> and <u>smooth</u>. Functions on closed intervals must have one-sided derivatives defined at the end points. Assignment p.105 # 1-4, 13-16