

3.1 Derivatives

Great Sand Dunes National Monument, Colorado

$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ is called the derivative of f at a.

We write: $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
"The derivative of f with respect to x is ..."

There are many ways to write the derivative of $y=f(x)$
$f^{\prime}(x)$ " f prime x " or "the derivative of f with respect to $\mathrm{x"}$
$y^{\prime} \quad$ "y prime"
$\frac{d y}{d x}$ "dee why dee ecks" or
"the derivative of y with respect to x "
$\underline{d f}$ $d x$
"dee eff dee ecks"
"the derivative of f with respect to $\mathrm{x"}$
$\frac{d}{d x} f(x)$ "dee dee ecks uv eff uv ecks" or ($d d x$ of f of x)
"the derivative of f of x "
$d x$ does not mean d times x !
$d y$ does not mean d times y !
$d y$
$d x$ does not mean $d y \div d x$!
(except when it is convenient to think of it as division.)
$\frac{d f}{d x}$ does not mean $d f \div d x!$
(except when it is convenient to think of it as division.)
$\frac{d}{d x} f(x)$ does not mean $\frac{d}{d x}$ times $f(x)$!
(except when it is convenient to treat it that way.)

In the future, all will become clear.

The derivative is the slope of the original function.

$$
\begin{gathered}
y=x^{2}-3 \\
y^{\prime}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3-\left(x^{2}-3\right)}{h} \\
y^{\prime}=\lim _{h \rightarrow 0} \frac{x^{\prime 2}+2 x h+h^{h}-x^{\prime}}{\nmid} \\
y^{\prime}=\lim _{h \rightarrow 0} 2 x+\not h^{\prime} \\
y^{\prime}=2 x
\end{gathered}
$$

A function is differentiable if it has a derivative everywhere in its domain. It must be continuous and smooth.
Functions on closed intervals must have one-sided derivatives defined at the end points.

Assignment p. 105 \# 1-4, 13-16

