Warm-up

1. Is the function $y=|x+1|$ differentiable? Why?
2. Find $d y / d x$ of $f(x)=x^{\wedge} 2+x-1$ at $x=1$.

Colorado National Monument Photo by Vickie Kelly, 2003 , Y, if ab Greg Kelly, Hanford High School Richland, Washington

If the derivative of a function is its slope, then for a constant function, the derivative must be zero.

$$
\begin{aligned}
& \frac{d}{d x}(c)=0 \\
& \text { example: } \quad y=3 \\
& y^{\prime}=0
\end{aligned}
$$

The derivative of a constant is zero.

We saw that if $y=x^{2}, y^{\prime}=2 x$.
This is part of a pattern.

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

examples:

$$
\begin{array}{ll}
f(x)=x^{4} & y=x^{8} \\
f^{\prime}(x)=4 x^{3} & y^{\prime}=8 x^{7}
\end{array}
$$

power rule

constant multiple rule:

examples:

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

$$
\begin{aligned}
& \frac{d}{d x} c x^{n}=c n x^{n-1} \\
& \frac{d}{d x} 7 x^{5}=7 \cdot 5 x^{4}=35 x^{4}
\end{aligned}
$$

constant multiple rule:

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

sum and difference rules:

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

$$
y=x^{4}+12 x
$$

$$
y^{\prime}=4 x^{3}+12
$$

$$
\frac{d}{d x}(u-v)=\frac{d u}{d x}-\frac{d v}{d x}
$$

$y=x^{4}-2 x^{2}+2$
$\frac{d y}{d x}=4 x^{3}-4 x$

Example:

Find the horizontal tangents of: $y=x^{4}-2 x^{2}+2$

$$
\frac{d y}{d x}=4 x^{3}-4 x
$$

Horizontal tangents occur when slope = zero.

$$
\begin{array}{cl}
4 x^{3}-4 x=0 & \begin{array}{l}
\text { Plugging the } x \text { values into the } \\
\text { original equation, we get: }
\end{array} \\
x^{3}-x=0 & y=2, y=1, y=1 \\
x\left(x^{2}-1\right)=0 & \begin{array}{l}
\text { (The function is even, so we } \\
\text { only get two horizontal } \\
\text { tangents.) }
\end{array} \\
x(x+1)(x-1)=0 &
\end{array}
$$

First derivative (slope) is zero at:

$$
x=0,-1,1
$$

Graph the original function then find its derivative and its graph.

Original

2. $f(x)=x^{2}-5 x$

3. $f(x)=x^{3}-2 x+1$

Derivative

Derivative Graph Activity

Assignment p. 124 \#1-10

product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Notice that this is not just the

 product of two derivatives.This is sometimes memorized as: $d(u v)=u d v+v d u$ $\frac{d}{d x}\left[\left(x^{2}+3\right)\left(2 x^{3}+5 x\right)\right]=\left(x^{2}+3\right)\left(6 x^{2}+5\right)+\left(2 x^{3}+5 x\right)(2 x)$

$$
\frac{d}{d x}\left(2 x^{5}+5 x^{3}+6 x^{3}+15 x\right)
$$

$$
\frac{d}{d x}\left(2 x^{5}+11 x^{3}+15 x\right) \quad 6 x^{4}+5 x^{2}+18 x^{2}+15+4 x^{4}+10 x^{2}
$$

$$
10 x^{4}+33 x^{2}+15
$$

$$
10 x^{4}+33 x^{2}+15
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \quad \text { or } \quad d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}
$$

$$
\frac{d}{d x} \frac{2 x^{3}+5 x}{x^{2}+3}=\frac{\left(x^{2}+3\right)\left(6 x^{2}+5\right)-\left(2 x^{3}+5 x\right)(2 x)}{\left(x^{2}+3\right)^{2}}
$$

Higher Order Derivatives:

$y^{\prime}=\frac{d y}{d x}$ is the first derivative of y with respect to x .
$y^{\prime \prime}=\frac{d y^{\prime}}{d}=\frac{d}{d y} \underline{d y}=\frac{d^{2} y}{d x^{2}} \quad$ is the second derivative.
(y double prime)
$y^{\prime \prime \prime}=\frac{d y^{\prime \prime}}{d x} \quad$ is the third derivative.
$y^{(4)}=\frac{d}{d x} y^{\prime \prime \prime} \quad$ is the fourth derivative.

We will learn later what these higher order derivatives are used for.

