Warm-up

1. If $f(x)=\cos ^{3}(4 x)$ find $f^{\prime}(x)$
2. If $f(x)=(2 x-3)^{4}$ find $f^{\prime}(x)$
3. Find y^{\prime} of $y=\log _{5} x$
4. If $x^{2}+3 x y^{2}=6$, what is $\frac{d y}{d x}$ at the point $(-1,3)$?

3.4 Velocity, Speed, and Rates of Change

Consider a graph of displacement (distance traveled) vs. time.

The speedometer in your car does not measure average velocity, but instantaneous velocity.

$$
V(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

(The velocity at one moment in time.)

Velocity is the first derivative of position.

Example:

Free Fall Equation

$$
\begin{gathered}
s=\frac{1}{2} g t^{2} \\
s=\frac{1}{2} \cdot 32 t^{2} \\
s=16 t^{2} \\
V=\frac{d s}{d t}=32 t
\end{gathered}
$$

Gravitational Constants:

$$
g=32 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}
$$

$$
g=9.8 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}
$$

$$
g=980 \frac{\mathrm{~cm}}{\mathrm{sec}^{2}}
$$

Speed is the absolute value of velocity.

Acceleration is the derivative of velocity.

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \quad \text { example: } \quad v=32 t
$$

If distance is in: feet

Velocity would be in: $\frac{\text { feet }}{\text { sec }}$
Acceleration would be in: $\frac{\frac{\mathrm{ft}}{\mathrm{sec}}}{\mathrm{sec}}=\frac{\mathrm{ft}}{\sec ^{2}}$

It is important to understand the relationship between a position graph, velocity and acceleration:

time

Ex. A particle moves along the curve given by $y=\sqrt{t^{3}+1}$. Find the acceleration when $t=2$ seconds.

Ex. Suppose that position equation for a moving object is given by $s(t)=$ $3 t^{2}-2 t+5$ where s is measured in meters and t is measured in seconds. Find the velocity of the object when $t=2$.

Rates of Change:

Average rate of change $=\frac{f(x+h)-f(x)}{h}$

Instantaneous rate of change $=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

These definitions are true for any function.
(x does not have to represent time.)
p. 136 \#8-10, 13, 20-24

Example 1:

For a circle:

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{d A}{d r} & =\frac{d}{d r} \pi r^{2} \\
\frac{d A}{d r} & =2 \pi r
\end{aligned}
$$

Instantaneous rate of change of the area with respect to the radius.
$d A=2 \pi r d r$
For tree ring growth, if the change in area is constant then $d r$ must get smaller as r gets larger.
from Economics:
Marginal cost is the first derivative of the cost function, and represents an approximation of the cost of producing one more unit.

Example 13:

Suppose it costs: $\quad c(x)=x^{3}-6 x^{2}+15 x$ to produce x stoves. $\quad c^{\prime}(x)=3 x^{2}-12 x+15$

If you are currently producing 10 stoves, the $11^{\text {th }}$ stove will cost approximately:

$$
c^{\prime}(10)=3 \cdot 10^{2}-12 \cdot 10+15
$$

Note that this is not a great approximation Don't let that bother you.

$$
\begin{aligned}
& =300-120+15 \\
& =\$ 195
\end{aligned}
$$

The actual cost is:
$C(11)-C(10)$
marginal cost
$=\left(11^{3}-6 \cdot 11^{2}+15 \cdot 11\right)-\left(10^{3}-6 \cdot 10^{2}+15 \cdot 10\right)$
$=770-550=\$ 220 \longleftarrow$ actual cost

Note that this is not a great approximation Don't let that bother you.

Marginal cost is a linear approximation of a curved function. For large values it gives a good approximation of the cost of producing the next item.

