


3.4   Velocity, Speed, and Rates of Change

Greg Kelly, Hanford High School, Richland, Washington



Consider a graph of displacement (distance traveled) vs. time.
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The speedometer in your car does not measure average 

velocity, but instantaneous velocity.
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(The velocity at one 

moment in time.)
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Velocity is the first derivative of position.
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Example: Free Fall Equation
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Speed is the absolute value of velocity.
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Acceleration is the derivative of velocity.
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It is important to understand the relationship between a 

position graph, velocity and acceleration:
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Rates of Change:

Average rate of change =
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These definitions are true for any function.

( x does not have to represent time. )
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Example 1:

For a circle:

2A r
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Instantaneous rate of change of the area with

respect to the radius.

For tree ring growth, if the change in area is constant then dr

must get smaller as r gets larger.
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from Economics:

Marginal cost is the first derivative of the cost function, and 

represents an approximation of the cost of producing one 

more unit.
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Example 13:
Suppose it costs:   3 26 15c x x x x  

to produce x stoves.   23 12 15c x x x   

If you are currently producing 10 stoves, the 

11th stove will cost approximately:

  210 3 10 12 10 15c     

300 120 15  

$195

marginal costThe actual cost is:    11 10C C

   3 2 3 211 6 11 15 11 10 6 10 15 10         

770 550  $220
actual cost

Note that this is not a 

great approximation –

Don’t let that bother you.
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Note that this is not a 

great approximation –

Don’t let that bother you.

Marginal cost is a linear approximation of a curved 

function.  For large values it gives a good approximation 

of the cost of producing the next item.
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