\qquad

Goal 1: The Definition of the Derivative

1) What does the word "derivative" mean? What does it represent? What are the different types of notation used to represent the derivative?
2) What is the formula that is used to calculate the derivative of functions?
3) What is the difference between finding the average rate of change and finding the derivative?
4) An object is dropped from the top of a $100-\mathrm{m}$ tower. Its height above the ground after t seconds is $\mathrm{h}=100-4.9 \mathrm{t}^{2}$.
a. Find the object's average rate of change on the interval [1,3]
b. Find the object's instantaneous rate of change at $t=2$
5) Given: $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+6$ Find $\mathrm{f}^{\text {' }}(\mathrm{x})$ using the "limit" definition. Check your answer using the power rule.

Goal 2: Differentiability

1) What does "differentiable" mean?
2) For a function to be differentiable at a value what must happen at that point?
3) Describe the different situations in which the derivative will not exist at a particular point
4) If the derivative exists at the point where $\mathrm{x}=4$, MUST the function be continuous at $\mathrm{x}=4$? Explain.
5) If a function is continuous at the point where $\mathrm{x}=4$, MUST the derivative exist at $\mathrm{x}=4$? Explain.
6) Is the function $y=\sqrt{|x|}$ continuous at $\mathrm{x}=0$? Is it differentiable? Explain.
7) Determine where the function $f(x)=\sqrt[5]{x-4}$ is not differentiable and explain why.
8) Show (using Calculus!) that the function $f(x)=\left\{\begin{array}{c}\sqrt{x} \quad x \leq 1 \\ 2 x-1 \quad x>1\end{array}\right.$ is not differentiable at $\mathrm{x}=1$

Goal 3: Derivative Rules

Differentiate each of the following.

1. $y=x \sin (x)$
2. $y=\frac{x^{4}-1}{x^{2}}$
3. $f(x)=e^{6 x}$
4. $y=\frac{1-x^{2}}{1+x^{2}}$
5. Find $\frac{d^{2} y}{d x^{2}}$ of $\mathrm{y}=\frac{1}{x^{2}}$
6. $y=\left(x^{3}-1\right)^{5}$
7. $y=\sqrt[3]{2 x^{2}+4 x+1}$
8. $y=x^{5} \sec x$
9. $y=\tan (2 x)$
10. $y=\tan x \sec x$
11. $y=\cos (3 x)$
12. $y=\sqrt{\ln x}$
13. $y=2 x \cos (x)$
14. $y=\sin (3 x) \sin \left(x^{2}\right)$
15. Use the information below to find $h^{\prime}(2)$ if $h(x)=f(x) g(x)$
$f(2)=3, f^{\prime}(2)=4, g(2)=3, g^{\prime}(3)=2$
16. Find the equation for the tangent line to the graph of $f(x)=\sqrt{x+1}$ at the point where $\mathrm{x}=3$.

Goal 4: Implicit Differentiation

Use implicit differentiation to find $\frac{d y}{d x}$

1. $x^{2}+2 y^{2}=2 x y$
2. $y^{3}+x y^{2}=\frac{3}{2}$
3. $3 y^{3}-4 x^{2} y+x y=-5$
4. Find the equation of the normal line of $x^{2}+x y-y^{2}=1$ at $(1,0)$
