Limits at Infinity When Variable is Exponent

Sample Problems

a) $\lim _{x \rightarrow \infty} 2^{x}$ and
b) $\lim _{x \rightarrow-\infty} 2^{x}$

Solution: Since $2>1$, these limits are ∞ and 0, i.e. $\lim _{x \rightarrow \infty} 2^{x}=\infty$ and $\lim _{x \rightarrow-\infty} 2^{x}=0$.
c) $\lim _{x \rightarrow \infty}\left(\frac{2}{3}\right)^{x}$ and
d) $\lim _{x \rightarrow-\infty}\left(\frac{2}{3}\right)^{x}$

Solution: Since $\frac{2}{3}<1$, these limits are 0 and ∞, i.e. $\lim _{x \rightarrow \infty}\left(\frac{2}{3}\right)^{x}=0$ and $\lim _{x \rightarrow-\infty}\left(\frac{2}{3}\right)^{x}=\infty$.
e) $\lim _{x \rightarrow \infty} \frac{2^{x+3}}{3^{x+1}}$

Solution: We start by re-writing the exponential expressions. The goal is to bring it into a form where there is only one exponential expression involving x.

$$
\frac{2^{x+3}}{3^{x+1}}=\frac{2^{x} \cdot 2^{3}}{3^{x} \cdot 3^{1}}=\frac{2^{x} \cdot 8}{3^{x} \cdot 3}=\frac{8}{3}\left(\frac{2}{3}\right)^{x}
$$

$$
\text { Thus } \lim _{x \rightarrow \infty} \frac{2^{x+3}}{3^{x+1}}=\lim _{x \rightarrow \infty} \frac{8}{3}\left(\frac{2}{3}\right)^{x}=\frac{8}{3} \lim _{x \rightarrow \infty}\left(\frac{2}{3}\right)^{x}=0 \quad \text { since } \frac{2}{3}<1
$$

f) $\lim _{x \rightarrow-\infty} \frac{2^{x+3}}{3^{x+1}}$

Solution: $\lim _{x \rightarrow-\infty} \frac{2^{x+3}}{3^{x+1}}=\lim _{x \rightarrow-\infty} \frac{2^{x+3}}{3^{x+1}}=\lim _{x \rightarrow-\infty} \frac{8}{3}\left(\frac{2}{3}\right)^{x}=\frac{8}{3} \lim _{x \rightarrow-\infty}\left(\frac{2}{3}\right)^{x}=\infty$
g) $\lim _{x \rightarrow \infty} \frac{2^{2 x+1}}{3^{x-1}}$

Solution: We start by re-writing the exponential expressions. The goal is to bring it into a form where there is only one exponential expression involving x.

$$
\begin{gathered}
\frac{2^{2 x+1}}{3^{x-1}}=\frac{2^{2 x} \cdot 2^{1}}{\frac{3^{x}}{3^{1}}}=\frac{\left(2^{2}\right)^{x} \cdot 2}{3^{x} \cdot \frac{1}{3}}=\frac{4^{x} \cdot 6}{3^{x}}=6\left(\frac{4}{3}\right)^{x} \\
\text { Thus } \lim _{x \rightarrow \infty} \frac{2^{2 x+1}}{3^{x-1}}=\lim _{x \rightarrow \infty} 6\left(\frac{4}{3}\right)^{x}=6 \lim _{x \rightarrow \infty}\left(\frac{4}{3}\right)^{x}=\infty \quad \text { since } \frac{4}{3}>1
\end{gathered}
$$

h) $\lim _{x \rightarrow-\infty} \frac{2^{2 x+1}}{3^{x-1}}$

Solution: $\lim _{x \rightarrow-\infty} \frac{2^{2 x+1}}{3^{x-1}}=\lim _{x \rightarrow-\infty} 6\left(\frac{4}{3}\right)^{x}=6 \lim _{x \rightarrow-\infty}\left(\frac{4}{3}\right)^{x}=0$
3. Compute each of the following limits.
a) $\lim _{x \rightarrow \infty} \frac{1}{x}$

Solution: This is a very important limit. Since the limit we are asked for is as x approaches infinity, we should think of x as a very large positive number. The reciprocal of a very large positive number is a very small positive number. This limit is 0 .
b) $\lim _{x \rightarrow-\infty} \frac{1}{x}$

Solution: Since the limit we are asked for is as x approaches negative infinity, we should think of x as a very large negative number. The reciprocal of a very large negative number is a very small negative number. This limit is 0 .

