§2.2-Derivatives on the Calculator

Math Print "MATH" " 8 " from homescreen	Classic Print "MATH" " 8 " from homescreen
$f^{\prime}(c)=\left.\frac{d}{d x}(f(x))\right\|_{x=c}$	$f^{\prime}(c)=\mathrm{nDeriv}(f(x), x, c)$
Graph: $Y_{1}=\left.\frac{d}{d x}(f(x))\right\|_{x=x}$	Graph: $Y_{1}=\mathrm{nDeriv}(f(x), x, x)$

Example 1:

Evaluate each of the following on your calculator.
(a) $f^{\prime}(4)$ if $f(x)=\ln x$
(b) $\left.\frac{d y}{d x}\right|_{x=-2}$ if $y=\frac{3 x^{2}+1}{2 x+5}$
(c) $y^{\prime}(0)$, if $y=x^{1 / 3}$
(d) Which of the preceding values are correct and which are not correct? Why would your calculator give incorrect answers?

Example 2:

Use your calculator to sketch the graph of the derivative of the following functions. Use the calculator's graph to identify the equation of the derivative function.
(a) $f(x)=-\cos x$
(b) $y=.25 x^{4}$
(c) $y=\frac{x|x|}{2}$

Sometimes when we have a particularly "ugly" function and we are interested in finding information about its derivative, we can use the calculator's number crunching ability to an even greater degree.

Example 3:

If $f(x)=\frac{\sin x \sqrt{x^{2}+1}}{e^{x}}$, find $f^{\prime \prime}(1)$, the second-derivative of $f(x)$ at $x=1$.

