Name______ Date______ Period_____

Worksheet 8.1—Polar Intro & Derivatives

Show all work. No calculator except unless specifically stated.

Short Answer

Convert the following equations to polar form.

1.
$$y = 4$$

2.
$$3x-5y+2=0$$

$$3. \ x^2 + y^2 = 25$$

Convert the following equations to rectangular form.

4.
$$r = 3 \sec \theta$$

5.
$$r = 2\sin\theta$$

6.
$$\theta = \frac{5\pi}{6}$$

For the following, find $\frac{dy}{dx}$ for the given value of θ .

7.
$$r = 2 + 3\sin\theta$$
, $\theta = \frac{3\pi}{2}$

8.
$$r = 3(1 - \cos \theta), \ \theta = \frac{\pi}{2}$$

9. $r = 4\sin\theta$, $\theta = \frac{\pi}{3}$

10.
$$r = 2\sin(3\theta)$$
, $\theta = \frac{\pi}{4}$

11. Find the point of horizontal and vertical tangency for $r = 1 + \sin \theta$. Give your answers in polar form (r, θ) .

Make a table (of values, not one at which to eat) and sketch the graph.

12.
$$r = 2 - 2\sin\theta$$

13.
$$r = 1 + 2\cos\theta$$

14.
$$r = 4\cos(2\theta)$$

$$15. \quad r^2 = 4\sin(2\theta)$$

Multiple Choice

16. If $a \neq 0$ and $\theta \neq 0$, all of the following must represent the same point in polar coordinates except which ordered pair?

(A)
$$(a,\theta)$$

(B)
$$\left(-a, -\theta\right)$$

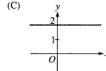
(C)
$$\left(-a, \theta - \pi\right)$$

(A)
$$(a,\theta)$$
 (B) $(-a,-\theta)$ (C) $(-a,\theta-\pi)$ (D) $(-a,\theta+\pi)$ (E) $(a,\theta-2\pi)$

(E)
$$(a, \theta - 2\pi)$$

- 17. Which of the following gives the slope of the polar curve $r = f(\theta)$ graphed in the xy-plane?

- (A) $\frac{dr}{d\theta}$ (B) $\frac{dy}{d\theta}$ (C) $\frac{dx}{d\theta}$ (D) $\frac{dy/d\theta}{dx/d\theta}$ (E) $\frac{dy}{dx} \cdot \frac{dr}{d\theta}$


18. Which of the following represents the graph of the polar curve $r = 2 \sec \theta$?

